Visualizzazione post con etichetta Brain Injury. Mostra tutti i post
Visualizzazione post con etichetta Brain Injury. Mostra tutti i post

giovedì 18 ottobre 2007

'Bionic' Nerve To Bring Damaged Limbs And Organs Back To Life


Source:

Science Daily — University of Manchester researchers have transformed fat tissue stem cells into nerve cells - and now plan to develop an artificial nerve that will bring damaged limbs and organs back to life.
In a study published in October's Experimental Neurology, Dr Paul Kingham and his team at the UK Centre for Tissue Regeneration (UKCTR) isolated the stem cells from the fat tissue of adult animals and differentiated them into nerve cells to be used for repair and regeneration of injured nerves. They are now about to start a trial extracting stem cells from fat tissue of volunteer adult patients, in order to compare in the laboratory human and animal stem cells.
Following that, they will develop an artificial nerve constructed from a biodegradable polymer to transplant the differentiated stem cells. The biomaterial will be rolled up into a tube-like structure and inserted between the two ends of the cut nerve so that the regrowing nerve fibre can go through it from one end to the other.
This 'bionic' nerve could also be used in people who have suffered trauma injuries to their limbs or organs, cancer patients whose tumour surgery has affected a nearby nerve trunk and people who have had organ transplants.
With a clinical trial on the biomaterial about to be completed, the researchers hope the treatment could be ready for use in four or five years.
Dr Kingham said: "The differentiated stem cells have great potential for future clinical use, initially for treatment of patients with traumatic injuries of nerves in the arms and legs.
"This work will also help to develop a similar surgical approach for organ transplant, to give full functional recuperation to the transplanted tissue.
"Furthermore, the technique of artificial nerve grafting could also be applicable when tumour mass has involved a nearby nerve trunk, which consequently has to be excised together with the tumour, such as the removal of a prostate tumour where damage to the nerve leads to male impotence."
Director of the UKCTR, Professor Giorgio Terenghi said: "This new research is a very exciting development with many future clinical applications that will improve the lives of many different types of patients and therefore many, many people.
"The frequency of nerve injury is one in every 1,000 of the population - or 50,000 cases in the UK - every year.
"The current repair method - a patient donating their own nerve graft to span the gap at the injury site - is far from optimal because of the poor functional outcome, the extra damage and the possibility of forming scars and tumours at the donor site. Tissue engineering using a combination of biomaterials and cell-based therapies, while at an early stage, promises a great improvement on that. Artificial nerve guides provide mechanical support, protect the re-growing nerve and contain growth factor and molecules favourable to regeneration. The patient will not be able to tell that they had ever 'lost' their limb and will be able carry on exactly as they did before."
He added: "The facilities available at the UKCTR have been developed jointly by the University of Manchester and the North West Development Agency, with exactly this aim - to provide the transition from experimental research to new clinical treatment."
Note: This story has been adapted from material provided by University of Manchester.

Fausto Intilla

giovedì 11 ottobre 2007

Neural Activity Connected To Blood Flow In New Brain Stimulation Technique


Source:

Science Daily — euroscientists at the University of California, Berkeley, have for the first time measured the electrical activity of nerve cells and correlated it to changes in blood flow in response to transcranial magnetic stimulation (TMS), a noninvasive method to stimulate neurons in the brain.
Their findings, reported in the Sept. 28 issue of the journal Science, could substantially improve the effectiveness of brain stimulation as a therapeutic and research tool.
With technological advances over the past decade, TMS has emerged as a promising new tool in neuroscience to treat various clinical disorders, including depression, and to help researchers better understand how the brain functions and is organized.
TMS works by generating magnetic pulses via a wire coil placed on top of the scalp. The pulses pass harmlessly through the skull and induce short, weak electrical currents that alter neural activity. Yet the relative scarcity of data describing the basic effects of TMS, and the uncertainty in how the method achieves its effects, prompted the researchers to conduct their own study.
"There are potentially limitless applications in both the treatment of clinical disorders as well as in fundamental research in neuroscience," said Elena Allen, a graduate student at UC Berkeley's Helen Wills Neuroscience Institute (HWNI) and co-lead author of the study. "For example, TMS could be used to help determine what parts of the brain are used in object recognition or speech comprehension. However, to develop effective applications of TMS, it is first necessary to determine basic information about how the technique works."
Other techniques for studying neural activity in humans, such as functional magnetic resonance imaging (fMRI) or electroencephalogram (EEG), only measure ongoing activity. TMS, on the other hand, offers the opportunity to non-invasively and reversibly manipulate neural activity in a specific brain area.
In a set of experiments, the researchers used TMS to generate weak, electrical currents in the brain with quick 2- to 4-second bursts of magnetic pulses to the visual cortex of cats. Direct measurements of the electrical discharge of nerve cells in the region in response to the pulses revealed that TMS predictably caused an initial flurry of neural activity, significantly increasing cell firing rates. This increased activity lasted 30 to 60 seconds, followed by a relatively lengthy 5 to 10 minutes of decreased activity.
What the researchers were able to determine for the first time was that the neural response to TMS correlated directly to changes in blood flow to the region. Using oxygen sensors and optical imaging, the researchers found that an initial increase in blood flow was followed by a longer period of decreased activity after the magnetic pulses were applied.
"This long-lasting suppression of activity was surprising," said Brian Pasley, a graduate student at HWNI and co-lead author of the study. "We're still trying to understand the physiological mechanisms underlying this effect, but it has implications for how TMS could be used in clinical applications."
The critical confirmation of the connection between blood flow and neural activity means that researchers can use TMS to alter neural activity, and then use fMRI, which tracks blood flow changes, to assess how the nerve cells respond over time.
"One of the most exciting applications of TMS is the ability to non-invasively modify neural activity in specific ways," said Pasley. "The brain is malleable, so brain stimulation may be used to alter and promote specific functions, like learning and memory, or suppress abnormal activity that underlies neurological disorders. If we can figure out the right ways to stimulate the brain, TMS will likely be useful in attempts to improve neural function."
The researchers noted that one of the difficulties in using TMS for specific applications is the fact that its effects vary in different brain regions and individuals.
"Using TMS is inherently challenging because its neural effects can be so variable," said Ralph Freeman, UC Berkeley professor of vision science and optometry and principal investigator of the study. "Fortunately, we can determine empirically what the end result is by making measurements with fMRI. This should be valuable to clinicians who must evaluate the effectiveness of a stimulation treatment. In turn, fMRI may serve as a guide to determine adjustments in treatment parameters."
The study was also co-authored by Thang Duong, a UC Berkeley graduate student in vision science. The National Eye Institute of the National Institutes of Health and the National Science Foundation helped support this research.
Note: This story has been adapted from material provided by University of california - Berkeley.

Fausto Intilla

mercoledì 19 settembre 2007

Brain Network Related To Intelligence Identified


Source:

Science Daily — A primary mystery puzzling neuroscientists – where in the brain lies intelligence? – just may have a unified answer.
In a review of 37 imaging studies related to intelligence, including their own, Richard Haier of the University of California, Irvine and Rex Jung of the University of New Mexico have uncovered evidence of a distinct neurobiology of human intelligence. Their Parieto-Frontal Integration Theory (P-FIT) identifies a brain network related to intelligence, one that primarily involves areas in the frontal and the parietal lobes.
“Recent neuroscience studies suggest that intelligence is related to how well information travels throughout the brain,” said Haier, a professor of psychology in the School of Medicine and longtime human intelligence researcher. “Our review of imaging studies identifies the stations along the routes intelligent information processing takes. Once we know where the stations are, we can study how they relate to intelligence.”
The data suggest that some of the brain areas related to intelligence are the same areas related to attention and memory and to more complex functions like language. Haier and Jung say this possible integration of cognitive functions suggests that intelligence levels might be based on how efficient the frontal-parietal networks process information.
Brain imaging studies of intelligence are relatively new, with Haier doing some of the first ones only 20 years ago. Although there is still discussion about how to define and measure intelligence, Haier and Jung found surprising consistency in the studies they reviewed despite the fact the studies represented a variety of approaches.
A detailed report on this research including peer commentary from 19 researchers appears online in the journal Behavioral and Brain Sciences.
In his peer commentary, University of Washington psychologist Earl Hunt writes: “The Jung & Haier P-FIT model shows how far we have progressed toward understanding the biological basis of intelligence. Twenty-five years ago researchers in the field were engaged in an unedifying discussion of the relation between skull sizes and intelligence test scores. By taking advantage of the huge advances in measurement of the brain that have occurred in the past quarter century, [Jung and Haier] can take the far more sophisticated view that individual differences in intelligence depend, in part, upon individual differences in specific areas of the brain and in the connections between them.”
Haier and Jung have made some of the seminal findings in intelligence studies. In a 2004 study, they found that regions related to general intelligence are located throughout the brain and that a single “intelligence center,” such as the frontal lobe, is unlikely. And in a 2005 study, they found that while there are essentially no disparities in general intelligence between the sexes, women have more white matter and men more gray matter related to intelligence test scores, suggesting that no single neuroanatomical structure determines general intelligence and that different types of brain designs can produce equivalent intellectual performance.
“Genetic research has demonstrated that intelligence levels can be inherited, and since genes work through biology, there must be a biological basis for intelligence,” Haier said. “We have a long way to go before we understand the details, but our P-FIT model provides a framework for testing new hypotheses in future experiments.”
Note: This story has been adapted from a news release issued by University of California - Irvine.

Fausto Intilla